A Synthetic Approach for Recommendation: Combining Ratings, Social Relations, and Reviews
نویسندگان
چکیده
Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized choices. Online social networks and user-generated content provide diverse sources for recommendation beyond ratings, which present opportunities as well as challenges for traditional RSs. Although social matrix factorization (Social MF) can integrate ratings with social relations and topic matrix factorization can integrate ratings with item reviews, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the two approaches, in two steps. First, we extend Social MF to exploit the graph structure of neighbors. Second, we propose a novel framework MR3 to jointly model these three types of information effectively for rating prediction by aligning latent factors and hidden topics. We achieve more accurate rating prediction on two real-life datasets. Furthermore, we measure the contribution of each data source to the proposed framework.
منابع مشابه
Book Recommendation based on Social Information
In this paper, we present our contribution in INEX 2013 Social Book Search Track. This track aim to explore social information (users reviews, ratings, etc...) for the libraryThing and Amazon collections of real books. In our submissions for SBSTrack, we rerank books by combining the Sequential Dependence Model (SDM) and the use of social component that takes into account both ratings and helpf...
متن کاملA Novel Trust Computation Method Based on User Ratings to Improve the Recommendation
Today, the trust has turned into one of the most beneficial solutions to improve recommender systems, especially in the collaborative filtering method. However, trust statements suffer from a number of shortcomings, including the trust statements sparsity, users' inability to express explicit trust for other users in most of the existing applications, etc. Thus to overcome these problems, this ...
متن کاملWeighted Random Walks for Meta-Path Expansion in Heterogeneous Networks
In social networks, users and items are joined in a complex web of relations, which can be modeled as heterogeneous information networks. Such networks include a variety of object types and the rich relations among them. Recent research has shown that a hybrid recommendation approach combining components built from extended meta-paths in the network can improve the accuracy of recommendations i...
متن کاملRating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews
The performance of a recommendation system relies heavily on the feedback of users. Most of the traditional recommendation algorithms based only on historical ratings will encounter several difficulties given the problem of data sparsity. Users’ feedback usually contains rich textual reviews in addition to numerical ratings. In this paper, we exploit textual review information, as well as ratin...
متن کاملRecommendation as Classification: Using Social and Content-Based Information in Recommendation
Recommendation systems make suggestions about artifacts to a user. For instance, they may predict whether a user would be interested in seeing a particular movie. Social recomendation methods collect ratings of artifacts from many individuals, and use nearest-neighbor techniques to make recommendations to a user concerning new artifacts. However, these methods do not use the significant amount ...
متن کامل